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Basic Setting

* “Single object tracking in clutter” problem
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Basic Setting
* “Single object tracking in clutter” problem

* Measurement-origin uncertainty (MOU), false clutter measurements and missed
detections
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Basic Setting
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Basic Setting

* “Single object tracking in clutter” problem

 Measurement-origin uncertainty (MOU), false clutter measurements and missed
detections
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The Association Variable

number of measurements

» Object-oriented association variable a,, € {0,1,... (M.}

—a, = m > 0:at time n, the object generates the measurement with index m

* Example 1:

clutter measurement

i z
M, = 4
Xn

\
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The Association Variable

* Object-oriented association variable a,, € {0,1,..., M,}
—a, = m > 0:at time n, the object generates the measurement with index m

—a, = 0: at time n, the object did not generate a measurement

e Example 2:

clutter measurement

l \
M, =2 2 =0

&y
x’I'L

\

missed detection
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The Poisson Distribution

* A discrete random variable m is said to have a Poisson distribution with parameter

pw>0,iffor m =0,1,2,... the probability mass function is given by

_ S
0.40— , ' : , p(m) _ K€
0.35}°% o p=1 | m)!
0.30F | o n=4 |

= \ o u=10

|| 0.25_

0.20}

Pr(m

0.15f
0.10f
0.05F
0.00

The parameter ¢ is the mean
as well as the variance

.
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Single Object Tracking in Clutter

* The state of the object is denoted z,, € R" and the joint measurement is given by

AT _T T 1T . :
Zn = (210,22 s+ -5 201, ] With entries 2., € R?

* The association variable a,, is given by
-m € {1,2,...,M,}, if measurement z,, ,, was generated by the object

— 0, if no measurement was generated by the object

e Association variable a,, and the number of measurements M,, are random variables

N
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Prior Distribution

* Key Assumptions I:
— Object detection 6,, € {0, 1}is a Bernoulli trial with success probability 0 < pg < 1
— The number of clutter measurements L,, is Poisson distributed with mean [t

— At most one measurement z,, ,, is generated by the object

* Joint prior probability mass function (pmf):

p(an, On, Ln) = p(an|0n, Ln) p(0,,) p(Ly)

Pd 9n21 1 a E{]. M}
0,) = _ _JIT,11 ERRER
p(r) {1 —pa 0,=0 plan|fn =1, Ln) {O a, =0
L 0 1,.... M
M . an € { ) ) n}
Ln pu— —C HC n en — O, Ln —
p( ) Ln' € p(a ’ ) {]. Ap = 0

© Florian Meyer, 2020




Prior Distribution

e After variable transform L,, + 6,, — M,, we obtain

Mn—1 u
< e He an, € 11,..., M
p(aann) _ {pd M,,! MMn B n { n}
(1 —pq) AT He q, =0

* Properties:
— For all arbitrary L,, + 0,, = M,, we have p(an,0n, L) = p(an, My,)
— p(an, My) is a valid pmf in the sense that >3, _ Zi\ﬁ;o plan, M,) =1

N
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Likelihood Function

* Key Assumption II:
— Clutter measurements are independent and identically distributed (iid) according to f.(z )

— Condition on x,,, the object-generated measurement 2., »is conditionally independent of
all the other measurements

. . . measurement model z,,, ,, = hy (2, v, ) With noise v
e Likelihood function: ( ) n

— for z, € RMnd "
f( ’ M ) . Hm:l fc(zm,n) Ay = 0
Zn|Ln, An, n) — [f(zan,n|wn)] M, 1 M
fe(Zan,n) Hm:l fc(zm,n) an € { PRI n}

M, d
— Forzn ¢ R F (20 @y s M) = 0

N /
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Joint Distributions

. . t HH — _ . . .
* Joint prior for o, State transition model x,, = g, (x,_1, u,) with noise u

Driving noise independent

f(@om) = f(o) [T f(@n 0 1)) across time 7 and

independent of x

n’=1
e Joint prior for a;.,, and M.,
n
_ Measurement generation
p(al‘”’ Ml;”) o H p(a”” M”/) independent across time n
n’/=1

e Joint likelihood function

Measurement noise and
z.w.a.M.:” Zor |, Q. Moo )
f( 1'"‘ Liny &1, 1'”) f( n ‘ ey ey ) clutter independent across
! — .
n'=1 time n

.
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The Joint Posterior Distribution

* The joint posterior distribution (A;.,, and z1.,, are observed and thus fixed)

f(wO:ny al:nlzlzn) - f(wO:ny Ai:n, Ml:n|zl:n) — M., fixed
Bayes rule E— X f(zlznlwlzna Qai:.n, Ml:n) f(wO:na ai:n, Ml:n)
Ton LAy, My, ——> — f(zlznlwlzna ai:n, Ml:n) f(mO:n)p(alzna Ml:n)

Expressions for joint
distributions

- f(wo) H f(wn’ |wn/—1)f(zn’ |wn’7 an’, Mn’)p(an’7 Mn’)
n’'=1

© Florian Meyer, 2020
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Problem Formulation

* Input at time n:
— All observations up to time z1.,
— "Markovian”’ statistical model

n

f(mlzna al:n‘zlzn) X f(wO) H f(mn’ ‘mn’—l)f(zn’ ‘wn’a Qp, Mn’)p(an’7 Mn')

n’'=1

* Output at time n:

— Estimate of &,

* Calculation of an estimate &,, is based on the marginal posterior pdf f(x,|z1.)

© Florian Meyer, 2020
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The Factor Graph

* Recall factorization of the joint posterior distribution:

n

F(@ 1 arnlfi) o F@o) [] F@orl@n—1) f Gl a5 plar, ()
— 1

observed and fixed

© Florian Meyer, 2020
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The Factor Graph

* Recall factorization of the joint posterior distribution:

f(a:n/ ’Cl}n/_l) f(zn/ ]a:n/, A/, Mn/)p(an/, Mn/)

i
n’'=1
n

f(@n|Tn—1)g1(Tnr, an) g2(ans)

f(wlzTU al:n‘zlzn) X f(wo)

f;ja;anh:;) Hm 1 fc(zm n) an € {17 Tty Mn}
f(zn‘wmanaMn) - M -
[T, fe(Zimn) \ a, =0
T f(zan,n|wn)
constant g]_ (wn, an) — fc(zan,n) an c {17 s ey
1 an = 0

My
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The Factor Graph

* Recall factorization of the joint posterior distribution:

f(wlzna afl:n‘zlzn) X f(wO) 11 f(wn’ ’wn’—l)f(zn’ ’wn’a an', Mn’

f(@n|Tn—1)g1(Tnr, an) g2(ans)

pMn=1
Pd =S¢ He an, ={1,...,M,}
Mp,

(1 —pq) ‘;\}n! e Hel a, =0

T

constant

p(an, M)

)p(an’7 Mn

/

)
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The Factor Graph

* Recall factorization of the joint posterior distribution:

f(-’Bl:n, al:n|z1:n) X f(mo) ]

n’=1
= f(zo) H f(@n | 1) gz, (Tn, an)

pdf(zan,nlwn)

,ucfc(zan,n)

9z (Tns an) = g1(Tn, an)g2(an) = {(1 ~ pa)

| f(wn’ ’mn’—l) f(zn’ ‘wn’a Ap', Mn’)p(an’a Mn’)

1 f(wn’ ’wn’—l)gl (w’n’7 an’)g2<an’)

an € {1,...,M,}

a, =0

© Florian Meyer, 2020
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The Factor Graph

* Recall factorization of the joint posterior distribution:

n

f(ajlzna afl:n|zlzn) 0.8 f(wO) H f(wn"mn’—l)gzn ((L‘n/, an’)

n’'=1

* Factor graph for two time steps n' € {n — 1,n}

9z, (wn/v an’)

F (@ 1) ? CP

* The factor graph is cycle free = message passing can provide exact marginals

.

© Florian Meyer, 2020
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Prediction

* Prediction step:
f(wn‘yl:n—l) — /f(wn‘wn—1>f(wn—1|y1:n—1)d$n—1

bn(@n) = / F (@ nl@n1) Vs (1) Ay

* Factor graph for two time steps n' € {n — 1,n}

o Vosn G—n
f(Tn|xn_1) | |

Gz, (T, Q)

© Florian Meyer, 2020
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Data Association

* Data association step:

¢n(wn) = Z 9z, (wna Ap = m) Vn(an = m)

* Factor graph for two time steps n' € {n — 1,n}

vn(a,) =1
(no other neighbors)

F(@n|n1) o Q

gzn (wn/ Y an/ >

© Florian Meyer, 2020
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* Update step:

Update

f(®n|21:m) < O (Tn) O (X0)

Voynt1(Tn) = On () d—n(xn)

* Factor graph for two time steps n' € {n — 1,n}

f(@nlzn-1) o Q

Gz, (T, Q)

f(wn|z1:n> X ¢n(wn) f(wn‘yl:n—l)

G—n Von41
i Pn

© Florian Meyer, 2020
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Particle-Based Update Step (cf. Class 4)

Given: Particles {<w55)>}j:1 ~ f(x,|yi.n_1) representing the predicted posterior PDF
Wanted: Particles {@g))}j:l ~ f(x,|y1.,) representing the posterior PDF

Perform importance sampling with proposal distribution fp(Z») = f(n|Y1:n—1) and
target distribution fi(x,) o< ¢n(®n) f(Xn|Y1.:n_1)

— calculate unnormallzed weights @ —[Zm "o 9z, (@) an =m) Jx fi(@?))/ fo(xD)

— normalize weights w4’ = wff)/z o 171)7(3 )=,

. (i T
Perform resampling to get {(wg))}jzl ~ f(x,|yin) from {(z), w (‘7))}] L= f(®n|y1n)

© Florian Meyer, 2020
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Summary

* Single object tracking in clutter
— possible association events are modelled by discrete random variable
— data association is performed by summing over all possible association events
— the sequential estimation problem that can be represented by a cycle free factor graph

— a particle-based implementation can provide exact estimation results as the number of
particles goes to infinity

.
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* “Single object tracking in clutter” problem
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Basic Setting
* “Single object tracking in clutter” problem
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Basic Setting
* “Single object tracking in clutter” problem
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Basic Setting

* “Single object tracking in clutter” problem

* Measurement-origin uncertainty (MOU), false clutter measurements and
detections

missed
- Measurements z,,
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The Association Variable

number of measurements

» Object-oriented association variable a,, € {0,1,... (M.}
—a, = m > 0:at time n, the object generates the measurement with index m

—a, = 0: at time n, the object did not generate a measurement

e Example:

clutter measurement

i z
M, = 4
Xn

.

© Florian Meyer, 2020



Probabilistic Data Association Filter

* Prediction Step

Lf(wn’ylzn—lz — /f(mn‘mnl) f(wn—l‘ylzn—lzdmn—l

s G

Predicted State-transition Previous
posterior pdf pdf posterior pdf
* Updated Step
M,
f(wn‘zlznz X \f(wn‘zlzn—lz 9z, (wna ap = m)
Poste?iror pdf Pregircted m=0
posterior pdf f( ’ ) f( | )
PaJ(Zm,1|Tn PaJ (Zm M, |Tn
= f(®n|z1:n-1) | (1 —pa)+ ’ + - F —
( n‘ " ) ( ) ,U'cfc(zm,l) ,ucfc(zm,Mn)

.

© Florian Meyer, 2020



Key Parameters

e Posterior Distribution

f(xn|z1.0) o f(®n|21:0-1) ((1 —pa)+ paf(z1n|Tn) T pdf(zMn,n\:cn)>

,ucfc(zl,n) Mcfc(zMn,n)

* Probability that a measurements is generated by the object 0 < pgq < 1 (probability of
detection)

N

© Florian Meyer, 2020 7



Key Parameters

e Posterior Distribution

f(xn|z1:0m) X f(@n]|Zz1:n-1) ((1 ~pa) + paf(z1n|Tn) R pdf(ZMn,n|iBn))

chc(zl,n) Ucfc(zMn,n)

* Probability that a measurements is generated by the object 0 < pgq < 1 (probability of
detection)

* Mean number of clutter measurements 0 < p.

.

© Florian Meyer, 2020 8



Key Parameters

e Posterior Distribution

f(zcn\zlzn) X f(a:n]zlzn_l) ((1 _pd) 4+ pdf(an’:Bn) IS pdf(Zan|iBn))

,ucfc(zl,n) /’LCfC<zMn7n)

* Probability that a measurements is generated by the object 0 < pgq < 1 (probability of
detection)

* Mean number of clutter measurements 0 < p.

* Clutter pdf 0 < f.(2z)

.

© Florian Meyer, 2020 9



Linear-Gaussian State-Space Model

* Consider a sequence of states x,, and a sequence of measurements y,,

7

State-Transition Model:

State x,, evolves according to
Ly = ann—l + up,
~—~

= f(Tn|Tn_1) driving noise (white)
with Gaussian driving noise

Uy ~ N(0> Zun)

\.

~\

Model for Object Generated Meas.:
Measurement ¥, is generated as
Yn,m — Hnwn + vn
~—

= f(yn,m|33n) measurement noise (white)

with Gaussian measurement noise

Up ~ N(O> Zvn)

* PriorPDFat n =0, g ~ N(tzy, Xx,)

.

© Florian Meyer, 2020
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Prob. Data Association with Linear-Gaussian Model

* Let us assume f(x,_1|y1.,—1)is Gaussian with mean g, , and covariance 3, |

* The Prediction step can be performed in closed form (as in the Kalman filter), i.e.,
f(n|Y1:n—1) is Gaussian with mean u,, and covariance X given as

Mo, = Gn iz, E;n =G, Emn_1GE + Yu,

* Goal: Closed-form solution for the update step such that f(«,|y1..) can be represented
be mean ptz, and covariance X,

© Florian Meyer, 2020 11
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The Gaussian Mixture Distribution

e A continuous random variable x is said to have a Gaussian mixture distribution with
K components and parameters wy., pg, Xx, k=1,..., K if its probability density

function is given by

K
f@) =) wy folw; pr, )
k=1

* The fy(x; pk, Xy) are Gaussian distributions with mean p;, and covariance matrix Xy

f(x) o
* The weights wy > 0 normalize to one, i.e.,Zf:1 wg =1

© Florian Meyer, 2020
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Mean and Covariance of Gaussian Mixture Distribution

* Let f(x) be a Gaussian mixture distributions with parameters wg, pr, X%, k=1,... . K
* The mean of f(x)is given by
Mg = W11 + W22 + -+ WK UK

* The covariance of f(x)is given by

K K
Yo =D k1 Wk Bk + D W Mk ulf — P Py,

. /

© Florian Meyer, 2020 13




.

Closed-Form Update Step

* Recall posterior distribution (z1., is observed and thus fixed)

pdf(zl n|wn) pdf(ZM n|wn)
fwnzlzn chwnzlzn—l (1_pd+ : + -+ -
( | ) ( ’ ) ( ) ,ucfc(zl,n) ,ucfc(zMn,n)
* Theorem: If the predicted posterior f(x,|z:.,—1) is Gaussian, with mean p_ and
covariance 2, and the model for the object-generated measurement is linear-
Gaussian, then f(xn|z1:.n)is a Gaussian mixture distribution with M,, + 1 components

and parameters
pdf(zm,nyzltn)
XX

" :ucfc(zm n) me {13---7Mn} WM +1 & (1 _pd)
Hm = Mg —|—(zm,n — Hnu;n) MM, +1 = g
DE—— ;
- UH > alman gain S = 5o

© Florian Meyer, 2020
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Closed-Form Update Step - Sketch of Proof

* Let’s take a look at the single component m € {1,..., M, }

pdf(zm,n|wn)f(wn|z1:n—1) _ pdf(zm,n|mn7 zl:n—l)f(wn|z1:n—1)

pefe (zm,n)

Kalman Update Step —» =

Statistical Independent
Meas. & Driving Noise

+—

.UCfc(zm,n)

_ pdf(zm,na mn|z1:n—1)
,Ucfc(zm,n)

— pdf(zm,n|z1:n—1)
:U’Cfc(zm,n)

Hm = [J,;" + K, (zm,n - Hnﬂl;n)

f(mnlzlzn—la zm,n)

Em — 2;n - KanE;n
o pdf(zm,n|zl:n—1)

/'I’Cf(:(zm,n)

fg(mn; ”’ma Zm)

* The conditional evidence f(zm,n|z1:n—-1) is given by

f(zm,n|zl:n—1) = fg(zm,n§ HnM;n, ani;nﬂg + Evn)

K,=¥, H (H, Y, H + %,

© Florian Meyer, 2020
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Closed-Form Update Step - Discussion

* Mean and covariances u,,, X,,,m = 1,..., M, + 10of the Gaussian mixture distribution
are obtained by

— performing the Kalman update step for each ""'measurement component” m=1,..., M,

— keeping predicted mean and covariance for the "missed-detection component” m = M,, + 1

* Weights u,,, X,,,m=1,..., M, + 1 are given as

Wm OCpdf(zm,n‘zlzn)/ﬂcfc(zm,n)7 m = 1,...,Mn W, +1 X (1 —pd)

— The probability of detection pq determines the ratio between measurement component
weights and missed-detection component weight

— Large conditional evidence f (2, n|21.n) means that measurement z, , is likely to be
object generated

— Large pcfo(2Zm,n) means that the measurement is likely to be clutter

. v

© Florian Meyer, 2020 16




Example

Posterior at time n — 1

f(an—l\ZLn—l)
Predicted Posterior at time n

f(wn|z1:n—1)

MotiOn

MOtiOn

&

D. Gaglione, G. Soldi, F. Meyer, F. Hlawatsch, P. Braca, A. Farina, and M. Z. Win, Bayesian
information fusion and multitarget tracking for maritime situational awareness, IET Radar Sonar
Navi., Nov. 2020.

Posterior at time n

f(xn|z1:0)

Measurements
(M n — 2)

17
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Closed-Form Update Step - Approximation

Let’s assume f(x,,_1|z1.,—1) is @ Gaussian mixture distribution with K components

At time n, we could calculate a predicted posterior f(x,|z1.,_1) that has a Gaussian
mixture distribution from f(x,,_1|z1.,_1) by performing K prediction steps

However, after the following update step, we would obtain a Gaussian mixture with
K (M, + 1) components = complexity of the resulting algorithm has a computational
complexity that scales exponentially with time n

Thus, after each update step, we approximate the update posterior f(x,|z1.,) by a
single Gaussian with a mean pz, and covariance 3/, that are equal to the mean and
covariance of its Gaussian mixture distribution (moment matching)

© Florian Meyer, 2020
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Closed-Form Update Step - Summary

» Step 1: Calculate means and covariances of mixture components:

Mo = [y, —i—Kn(zm,n—Hnu;n) m=1,..., M, B
Y,.=3 -K,H,%, _
b 2% Ln 2Mn+1 = Emn
K,=%, H (H,>, H +%,,) "
* Step 2: Calculate unnormalized weights:
Zomn; Hopy  H, X, HY + X, -
~m:pdfg( 3 l"l/ n n TL) mzl,---7Mn an+1:(1—pd)

/chc(zm,n)
My,+1 ~
m’)

m’=1

* Step 3: Normalize weights: w,, = W, /(>
* Step 4: Approximate Gaussian mixture by a single Gaussian with same mean and covariance (moment matching):
Mp+1 M, +1 M, +1
“mn = Zm:;L wmum Ewn = Zm:—li_ wm Zm + zm:—li_ wm“ml‘l’g‘l - I‘l’mn /‘Lgn

* Result: Mean p,._and covariance X, representing the posterior distribution f(x,|z1.,)

Y. Bar-Shalom, F. Daum, and J. Huang, The Probabilistic Data Association Filter, IEEE Contr. Syst. Mag., 2009

© Florian Meyer, 2020 19
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Conclusion

* Single object tracking in clutter for linear-Gaussian system models

— prediction and update steps can be performed in closed-form

— posterior distributions are Gaussian mixture densities with a number of components that

scales exponentially with time

— to limit computational complexity, the posterior distribution is approximate by a single

Gaussian after each update step

© Florian Meyer, 2020
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* At each time n: localize and track multiple objects x,, = [z]
measurements z, = [z, ... 2y, ,]" With uncertain origin

A state x; ,, consists of the object’s
position and further parameters;
its evolution is time modelled by an

The Multiobject Tracking Problem

Ty, ...x],| from

- Measurements z,

arbitrary model x; , = g(®; 1, Ui )
with noise u; ,,

Object States x,,_1 > &

.

© Florian Meyer, 2020



The Multiobject Tracking Problem

* At each time n: localize and track multiple objects ,, = [z, ... @ ,]" from

measurements z, = [z, ... 23, ,]  with uncertain origin

A measurement z,, ,, is modelled by an
arbitrary nonlinear model

Zmn = h(wk,ny Um,n) RN pu
with noise v,

Measurements z,,

T

| Object States

Object States T,,—1 n—1

.

© Florian Meyer, 2020



The Multiobject Tracking Problem

* At each time n: localize and track multiple objects x,, = [@; ,, ... x},]" from

measurements z,, = [z?n . zEmn]Twith uncertain origin

Measurements 2,

~ - e —~ P
~N
~ o
N
~N
.\ L o ® ®
[ J \‘ ~ - ®
o x
\ N
“‘ ® % \ > ~ | )(
Measurements z ® | | \ o n ‘ / _
Bl “ S o n—1 || Object States x,,

Object States &, n—1

.
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The Multiobject Tracking Problem

* At each time n: localize and track multiple objects ,, = [z, ... @ ,]" from

measurements z, = [z, ... 23, ,]  with uncertain origin

* Data association is challenging because of false clutter measurements and missing
measurements

- Measurements z,

Object States &, > i

.
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The Multiobject Tracking Problem

* At each time n: localize and track multiple objects ,, = [z, ... @ ,]" from

measurements z, = [z, ... 23, ,]  with uncertain origin

* Data association is challenging because of false clutter measurements and missing
measurements

- Measurements z,

Object States &, > i

.
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Association Vectors

* Recall measurement vector at time n, z,, = [zifn zQT,n e z}\}mn]T

* Object-oriented association vector @, = |[G1n G2 ... Q]
— a; n, = m > 0: at time n object ¢ generates measurement with index m

— a; , = 0:attime n object 7 did not generate a measurement

Y

clutter measurement

.ZSn Zyn
I1=3 a2,n:0
x2n

azn = 4

mlssmg measurement

© Florian Meyer, 2020




Why Multiobject Tracking?

» Separate single-object tracking (left) vs joint multiobject tracking (right)

800 T T 800 T T
—true track —true track
~— estimated track ~— estimated track
600 *_measurement |- 600 | - measurement |-
400 400
— 200 | — 200}
E E
2 2
% 0 [ % o [
[o] o
? ?
>.200 >.200F
-400 -400
-600 - -600 -
-800 N . : 2 : " A -800 , . . . . " )
-800 -600 -400 -200 0 200 400 600 800 -800 -600 -400 -200 0 200 400 600 800
x-coordinate [m] x-coordinate [m)

* Only a joint multiobject tracking formulation works
\
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Prior Distributions

* Assumptions:

1. Object detections are independent Bernoulli trials with success probability 0 < pg < 1

2. The number of clutter measurements is Poisson distributed with mean Lic
3. At most one measurement is generated by each object

4. A measurement can be generated from at most one object
* Assumptions 1-3 are parallel to the single object tracking case

* Every association event expressed by a vector a,, = (a1, . . . aI,n]T automatically
fulfills Assumption 3 (scalar association variable a; ,, for each object)

e Assumption 4 can be enforced by the following check function

A~ )0, Ji,5€{1,2,...,I} such that i#j and a; ,=a;,#0
plan) = .
1, otherwise

© Florian Meyer, 2020




Prior Distributions

* Letus denoteby D, = {7, c{l,....1}|a;n, > 0} the set of detected object indexes
corresponding to vector a,,

* The prior pmf p(a,, M,,) is given by

Check if every measurement is generated by at most one object

Pd Danl et I
panaMn =P\ An ( ) 1_pd
( ) =(#lan) fre(1 = pa) ! ( )

. p(a,n, Mn) is a valid pmf in the sense that it can be normalized as

My, M,
Zﬁnzo ZalynZO T Zal’nzo p(a’Tm Mn) =1

K Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and Data Fusion: A Handbook of Algorithms, YBS, 2011.

© Florian Meyer, 2020
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Prior Distributions - Examples

 Example 1: No detections, all clutter case

Probability that no object

/ generates a measurement
M,

N\

Poisson pmf of the number
of clutter measurements evaluated at M,

© Florian Meyer, 2020
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Prior Distributions - Example

* Example 2: All detections, no clutter case ( a is any association vector that assigns
exactly one measurement to each object, i.e., any permutationof 1,2,...,1 )

Poisson pmf of the number

/ of clutter measurements evaluated at 0

—Uc - .
_d . . e T Probability that every object
p(a"n = Qy, Mn — I) - Pqa generates a measurement

T

There are I! different a“

© Florian Meyer, 2020
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Prior Distributions

* Joint prior distribution of object states at time n = 0

I
flmo) = | [ fzio)

i=1

] o ] . _ Driving noise independent

* Joint state transition function (object states evolve independently) across objects

I

f(wn’wn—l) — H f(wz,n ajfé,n—1> Driving noise independent

=1 across time n and

. . . L . independent of
* Joint prior distribution ’

.

© Florian Meyer, 2020 12



Likelihood Function

* Key Assumption II:
— Clutter measurements are independent and identically distributed (iid) according to f.(z )

— Condition on x; ,,, the object-generated measurement 2, . » is conditionally independent
of all the other measurements

I _ measurement model 2., .n, = hy(Zy, vy) with noise v
e Likelihood function: "

— for z,, € RMnd

/

f(zn|@n, an, M)

I
VR
M
»)
Q
kh
|
ey i
ek
v: 3
\.: §
~— |~
S
\—)
N—
—:
o+
/
N
3
3
N—

M, d
— For z, ¢ R*" Fz | an, M) = 0

\ Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and Data Fusion: A Handbook of Algorithms, YBS, 2011. /

© Florian Meyer, 2020 13
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Joint Distributions

e Joint prior for a;.,, and M.,

p(afl:nyMl:n) — H p(a'n’a Mn’)
n’=1

e Joint likelihood function

n

f(zlzn‘ml:na ai.n, Ml:n) — H f(zn”mn’aa'n’an’>

n’=1

Measurement generation
independent across time n

Measurement noise and
clutter independent across
time n

© Florian Meyer, 2020
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The Joint Posterior Distribution

* The joint posterior distribution (M .,, and z1., are observed and thus fixed)

f(wO:na al:n’zlrn) — f(wO:na ai.n, Ml:n‘zlzn) — M., fixed
Bayes rule —> X f(zlzn’wlzny Aq:.n, Ml:n) f(wO:na A1:n, Ml:n)

Ton 1L @1, M.y ——> :f(zlzn’wlznaafl:naMl:n)f(wO:n)p(alznaMlzn)
n I

1
Expressions for joint
ovmaons "~ = (T17@s0)) TL( TLS @irline-)) £l anrs Mo plans M)
j=1

n'=1 “i=1

. /

© Florian Meyer, 2020 15




Problem Formulation

* Input at time n:
— All observations up to time z1.,

— "Markovian’’ statistical model

I n I
f(w():na al:n‘zlzn) X ( H f('fcj,O)) H (H f(mi,n’ ‘wi,n’—1)> f(zn’ ‘wn’a any, Mn’)p(a’n’a Mn’)
g=1

n’'=1 “i=1

* Output at time n:
— Estimates of all &;.,,¢ € {1,...,1}

* Calculation of an estimates ;. is based on the marginal posterior pdfs f(xi . |z1.n)

\

© Florian Meyer, 2020 16



The Factor Graph

* Recall factorization of the joint posterior distribution:

I n I
f(wO:na al:n‘) X ( H f(mj,())) H (H f(wi,n’ ’wi,n’—l)) f‘wn’a an’a)p(an’a Mn’)
=1

observed and fixed

.

© Florian Meyer, 2020 17



The Factor Graph

* Recall factorization of the joint posterior distribution:

f(@1m, @10 |21:0) (Qf(mj’()))nf:[l(Z

I
f(wi,nf!wi,nfl)) F e @0y s Moy ) planss M)
1

( H (@i @i —1) g1 (i 00 ai,n’)g2(ai,n’)) o(an)

=1

~

f Za; n,n|Lin n
f(zn|mn7 an; Mn) — ( H (f (, | ) ) H fc(zm’n) e onetant
1€Da,, c zai,n n me—1
\ f(zai,n,n|mn) .
gl(iBin,CLi n) — fc(zai,mn) j.n S {]‘77Mn}
1 a’i,n =0
: /

© Florian Meyer, 2020 18



The Factor Graph

* Recall factorization of the joint posterior distribution:

I n I
f(wlzna al:n‘zlzn) X ( H f(wj,())) H (H f(wi,n’ ’wi,n’—l)) f(zn’ ’wn’a an, Mn’)p(a’n’a Mn’)

J /]

f(wj,o)> /n (Hf(w i) 1 (1, ai,mgzmi,n/)) ola)
p(an, Mn) — @(an)[(uc(

Q. <
— =
—_ —

= n’'=1

— Mc Mn
pd |Danj[€ H /“LC (1 _pd)[ <« constant
1 _pd) Mn‘

\ (i :{M(fdp) ain€{1,...,M,}

1 Ajn = 0

.

© Florian Meyer, 2020 19



The Factor Graph

* Recall factorization of the joint posterior distribution:
1
f(wlzna a’l:n‘zlzn) X (

n I
f(wj,O)) H ( f(wz',n’ ‘wi,n’—l)) f(zn’ ‘wn’y ap, , Mn’)p(an’7 Mn’)
1=1

1 n’'=1

o (L4500 ) TT ( TL7 @ ine-1)01 (i, ) 300100 ol
«( 0 o) 11 (H CE R VR C) e

j=1 n'=1 Ni=1 T
Recall: Check if every measurement is generated by at most one object
pdf(zai n,n|wi,n)
MCfC("’ZCL' n) ai’n < {177Mn}
9z, (CL‘i,n,az’,n) — gl(wi,naai,n)92<ai,n> — LT

(1 _pd> Ui n = 0
\

© Florian Meyer, 2020 20
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The Factor Graph

* Recall factorization of the joint posterior distribution:

1 n 1
f(wlzna afl:n‘zlzn) X ( f(wj,O)) H ( H f(wi,n’ |337L,n’—1>gzn (wi,n’a Qg n’ )) @(an’)
j=1 n’=1 “i=1

* Factor graph for time step n

)

f(wi,n’ ‘wi,n’—1>

~—

9z, (wz’,n’a ai,n’)

p(an)

© Florian Meyer, 2020
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* Prediction step:

¢—>z’,n($i,n) = /f(xi,n|wi,n—1) V—m’,n(wi,n—l)dwi,n—l

* Factor graph for time step n

M
f(wi,n’ ‘wi,n’—1>
—
M
9z, (wi,n’a ai,n’)
—/
S
p(an)
—/

Prediction Step

© Florian Meyer, 2020
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Measurement Evaluation

* Measurement evaluation:

Va, » (mi,n) = Qin (mz,n)

¢ai7n (@i,n) — /gzn (wi,rw ai,n) Vaim (wz,n) dwi,n

* Factor graph for time step n

M
f(wi,n’ ‘wi,n’—1>
—
M
9z, (wi,n’a ai,n’)
—/
S
p(an)
——/

© Florian Meyer, 2020




Data Association

* Data association:

* Factor graph for time step n

f(wi,n’ ‘wi,n’—1>
9z, (wi,n’a ai,n’)

p(an)

.

© Florian Meyer, 2020
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e Update step:

Update Step

f(wzn) X ¢>—mn(=’ﬂzn)¢wn(fﬂzn)

V—)i,n+1(mi,n) = ¢zn(wzn) ¢—>z‘,n(wz‘,n)

* Factor graph for time step n

S
f(wi,n’ ‘wi,n’—1>
—
'
9z, (wi,nla ai,n’)
—/
S
p(an)
—/

[f(@inlzin) = [(@in)

T

approx. since factor graph is not cycle-free

© Florian Meyer, 2020
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* Multiobject tracking

— possible association events are modelled by a discrete random vector
— measurement-origin uncertainty leads to a coupling of sequential estimation problems

— the joint sequential estimation problem can be represented by a factor graph with cycles

Summary

— approximate marginal posterior distributions can be calculated by passing messages on

the factor graph

© Florian Meyer, 2020
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Graph-Based Multiobject Tracking
Part 4: Graph-Based Processing |l

Florian Meyer
joint work with Jason Williams, Paolo Braca, Peter Willett, and Franz Hlawatsch
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Electrical and Computer Engineering Department
University of California San Diego
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JACOBS SCHOOL OF ENGINEERING




.

Tree vs Cyclic Graph

A factor graph represents the statistical model of an inference problem

* Message passing (the sum-product algorithm) on a factor graph can strongly reduce the
computational complexity of calculating marginal distributions

* Marginalization is exact if the factor graph is a tree and approximate if the factor graph

has cycles

=

M
o

=o o

* The factor graph is often not unique. A more "“detailed” graph

— has lower-dimensional operations ——>

lower computational complexity

— may introduce additional cycles ——> lower inference accuracy

B

© Florian Meyer, 2020




Factor Graphs with Cycles

Problem: When the factor graphs has cycles, message passing gets stuck

Solution: Determine message passing order by introducing artificial constant messages

New Problem 1: Message passing keeps running forever

Solution: Stop message passing after some time and compute marginals

New Problem 2: Message passing tend to very large or very small values
——> numerical issues

Solution: After calculating a message, normalize it

—O—-0—0

.

© Florian Meyer, 2020



Factor Graphs with Cycles

* |t turns out that when we normalize messages
— the sum-product algorithm (SPA) can still give good results

— marginal posterior distributions are not exact, but approximations (except means for
Gaussian models)

* Approximate marginal distributions are called "beliefs”

* The SPA on loopy graphs can be derived by approximating the posterior by the ~'Bethe
free energy”’

* Theoretical performance analysis is notoriously difficult in general

* Many practical applications of the SPA involve factor graphs with cycles: turbo codes,
LDPB codes, MIMO detection, cooperative localization, data association, ...

.

© Florian Meyer, 2020



The Multiobject Tracking Problem

* At each time n: localize and track multiple objects ,, = [z, ... @ ,]" from

measurements z, = [z, ... 23, ,]  with uncertain origin

* Data association is challenging because of false clutter measurements and missing
measurements

- Measurements z,

Object States x,,_1 > &

.

© Florian Meyer, 2020
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Prior Distributions

* Assumptions:

1. Object detections are independent Bernoulli trials with success probability 0 < pg < 1

2. The number of clutter measurements is Poisson distributed with mean Lic
3. At most one measurement is generated by each object

4. A measurement can be generated from at most one object
* Assumptions 1-3 are parallel to the single object tracking case

* Every association event expressed by a vector a,, = (a1, . . . aI,n]T automatically
fulfills Assumption 3 (scalar association variable a; ,, for each object)

e Assumption 4 can be enforced by the following check function

A~ )0, Ji,5€{1,2,...,I} such that i#j and a; ,=a;,#0
plan) = .
1, otherwise

© Florian Meyer, 2020
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The Factor Graph

» Recall factorization of the joint posterior distribution:

F(@ 1o rinl2100) (H faso)) 11 (ﬁﬂwi,n/\wi,w1>gzn<w@-,w,az-,m)so(anf)

j=1 n'=1

* Factor graph for time step n

)

f(wi,n’ ‘wi,n’—1>

~—

9z, (wz’,n’a ai,n’)

p(an)

© Florian Meyer, 2020
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* Recall Prediction step:

¢—>i,n(mi,n) = /f(mi,nlmi,n—

* Factor graph for time step n

)

f(-’Bz',n/ |il3z',n/—1)
~———
—

gz, (wi,n’y ai,n’)
————
M)

o(an)
—

Message Passing Order

1) V—m‘,n(ici,n—l) diBz‘,n—1 Here we would get stuck since messages
from two edges are not available

© Florian Meyer, 2020




Message Passing Order

* Measurement evaluation:

Vai,n (a:Z,’I’L) - ¢—>Z,n(w2,n)

Pain(@in) = /gzn (@i, @in) Va, , (Tin) dTin Solution: Set message from future
time steps to constant

* Factor graph for time step n

M
f(wi,n’ ‘wi,n’—1>
—
M
9z, (wi,n’a ai,n’)
—/
S
p(an)
——/

.

© Florian Meyer, 2020



\

* Update step:

Update Step

f(ian) X ¢>—>zn($zn)¢wn(ﬂ%n)

V—)i,n—i—l(wi,n) = Cbzn(fl%n) ¢—>i,n($z‘,n)

* Factor graph for time step n

S
f(wi,n’ ‘wi,n’—1>
—
'
9z, (wi,nla ai,n’)
—/
S
p(an)
—/

[ (@in]210) = (i)

T

approx. since factor graph is not cycle-free

© Florian Meyer, 2020




Update Step

* Update step revised
Flaiy) o ¢_>,-,n(a:7;,n) <«—— Data association message derived in class 10
= Qﬁ—m',n(mi,n) Z 9z, (wi,m ai»n) Vain (an)

QAn

= ¢—in(Tin) Z 9z, (Ti.n, @in) influence of other objects in the environment

ai,n=0 ] /

where gzn (wi,n: a'i,n) =9z, (mi,na ai,n)[/fmi,n (ai,n)

* The single object updated step of the multiobject tracking solution has the same
form as the single object tracking in clutter update step

. /

© Florian Meyer, 2020 10
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Multiobject Tracking Filters

* Let’s assume at time n, approximate posteriors f(mm_l) ~ f(®in-1|z1:n—1) for all
objects ¢ € {1,...,I} are available

* We can develop a multiobject tracking algorithm by performing foreachie {1,...,I}
)f(wi,n—l)dwi,n—l

* the conventional prediction step, i.e., ¢—; n(T; n)
* calculation of kg, , (a;p)

 the update step of the single object tracking (in clutter) solution where g (a:z-,n, ai,n)
is replaced by gz, (Zin, @in) = Gz, (Tin, Gin) K, , (Qin)

* Multiobject tracking is based on the calculation of kg, , (a; )

— Joint probabilistic data association

© Florian Meyer, 2020

11




.

» Step 1: Calculate means and covariances of mixture components:
Hm = l’l';zn + Ki,n (Zm,n - H’L’,n/J';i’n) m = ]_, e M, B
Em == 21_32 n Ki,nHi,nE;;i " _
Y ' EMW+1 = Emi,n,
Ki,'l’L = Zm_i,nH;];n (H’L,?’Lzm_anEn + Evi’n)_l
* Step 2: Calculate unnormalized weights:
— pafe(zmni Hinpy,  Hin X5, H, + Xy, ) ke, (a0 =m) - (3)
= i ML) TR T R * i m=1,...,M, =(1— T
w PR AT Whar, +1 (1 — pa)ka, , (ain =0)
) . . . -~ M,+1 -~
* Step 3: Normalize weights: w,, = Wy, /(D72 W)
* Step 4: Approximate Gaussian mixture by a single Gaussian with same mean and covariance (moment matching):
l’l'a:i,n = an\fidl‘_lwmum Emi,n = Z%;lem Em + Z%Zlemum.u’% - l"Lw1n I'Lg/i,,'n,
* Result: Mean p«; ,, and covariance Y, | representing the posterior distribution f(mi’n)
Y. Bar-Shalom, F. Daum, and J. Huang, The Probabilistic Data Association Filter, IEEE Contr. Syst. Mag., 2009 /

© Florian Meyer, 2020
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Particle-Based Update Step (cf. Class 4)

Given: Particles {(a:%)}‘] | =~ Oin(Tin) representing the predicted posterior PDF

j:

~

Wanted: Particles {(@E?}L)}j:l ~ f(x; ) representing the posterior PDF

Perform importance sampling with proposal distribution fp(xin) = ¢—in(xin) and
target distribution fi(x; ) x ¢z, . (Tin) d—in(Tin)
— calculate unnormalized welghts w(j) —[Z "0 Gz (T Ejfb,ai,n =m)] fi(z (]))/fp( (J))

— normalize weights w(J) /Z _ 1111(*7 ) oi=1,...,J

,n?

g=1

Perform resampling to get {<f§?%>}j:1 ~ f(x;,) from {(x z 2 ngg)}J ~ f(xin)

- qb—”',n(mi n) Z%no gzn (wz ny Qin — m)

© Florian Meyer, 2020
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Joint Probabilistic Data Association

* Recall measurement evaluation step:

Va; n (mi,n) - gb—)i,n (mz,n)

¢ai7n(a'i,n) — /gzn (wi,?’H ai,n) Va; n (xi,n)dmi,n
* Factor graph for time step n

f(wi,n’ ‘wi,n’—1>

9z, (wz’,n’a ai,n’)

p(an)

© Florian Meyer, 2020
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Joint Probabilistic Data Association

* Closed-form measurement evaluation step (for linear-Gaussian meas. models)

ba; ., (ain=0) = (1 —paq)
ba,., (Qin =m)

* Factor graph for time step n

)

~—

Vai,n (mi7frl‘) - fg (mi,n; ugi,n’

. pdfg<zm,n§ Hi,nﬂgiﬁani,TLE;i,nHEn + Evi,n)
:quC(zm,n)

,me{l,...,M,}

f(wi,n’ ‘wi,n’—1>

9z, (wz’,n’a ai,n’)

p(an)

o)

Lin

© Florian Meyer, 2020
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Joint Probabilistic Data Association

* Particle-based measurement evaluation step

¢a n az n ~ Z gzn Ejgaazn Va; n (wz,n) = {(wg?g)}jzl

* Factor graph for time step n

f(wi,n’ ‘wi,n’—1>

9z, (wz’,n’a ai,n’)

p(an)

© Florian Meyer, 2020
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Joint Probabilistic Data Association

* Recall data association step:

* Factor graph for time step n

f(wi,n’ ‘wi,n’—1>

9z, (wz’,n’a ai,n’)

p(an)

© Florian Meyer, 2020




Joint Probabilistic Data Association

e Data association:

o, (i) = ) oo ) vy, (an)

I
plan) H Cbaz-/,n (ai’,n)

a1,n=0 a;—1,n,=0 aj4+1,,=0 ar ,=0 / i’ =1

|
(]

i i

A ] 0, Fi,5€{1,2,...,I} such that i#j and a; ,=a;,#0
plan) = .
1, otherwise

» Computational complexity of calculating ks, , (a;,) scalesas O((M,, + 1)1) and is
thus only feasible for small 1

—> need scalable methods for approximate calculation of Kz, ,, (ai,n)

.

© Florian Meyer, 2020 18



Data Association Representations

For simplicity we consider a single time step and drop n in the notation

Recall description of object-measurement associations by object-oriented association
vectors a = [a1,as,...,a7]"

N {m e{1,2,..., M}, if object i generated measurement m
s

0 if object ¢ did not generate a measurement

Alternative description of object-measurement associations by measurement-oriented
association vectors b = [b1, 0o, .. ., bM]T with entries

A Jioe{l,2,... T}, if measurement m is generated by object i
bm — . .
0 if measurement m was not generated by an object

Recall data association assumptions: An (i) object can generate at most one
measurement and a (ii) measurement can be generated by at most one object

. v

© Florian Meyer, 2020 19
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Data Association Representations

* Events represented by object-oriented vector

a = |ai,as,..

-,ar]" satisfy property (i)

* Events represented by measurement-oriented vector ﬂ

b= [b1,bs,..

., bar| " satisfy property (ii)

* Events represented by object-oriented a and mea-
surement-oriented b satisfy (i) and (ii)

(i) every object generates at most

one measurement

(i) every measurement is generated
by at most one object

© Florian Meyer, 2020
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“Stretching” the Graph

* We use a hybrid description of data association uncertainty to replace ¢(a) by

I M
¢(a7 b) X H H \sz(azabm)
i=1m=1 0, a;,=m, by, #1
Ui (ai, b)) 2 or b, =1, a;#m
1, otherwise.
* Properties of ¥(a,b):
— is non-zero only if @ and b describe the same event
— checks consistency by low-dimensional factors U,y (ak , bm)
— does not alter marginal distributions since there is a deterministic

one-to-one mapping from a toband p(a) = >, ¥(a,b)

© Florian Meyer, 2020




- ™
Loopy SPA for Joint Probabilistic Data Association

 Stretching the graph enables calculation of approximate Rwi,n(ai) by means of the loopy
SPA

* At message passing iteration ¢ € {1,..., L} we calculate the
following SPA messages in parallel

¢\11 m—a; az Z \Ijzm CLZ, H E 1]

z';éz
M

M
A () = (@) Yamlarsb) [ 04 (2)
m’'=1

ag =0

m’#m

« Initialization at £ = 0: 6y ., (b)) = S0 bas (1) Wi (i, by

. /

© Florian Meyer, 2020 22




- ™
Loopy SPA for Joint Probabilistic Data Association

 Stretching the graph enables calculation of approximate /Z:wi,n(a,i) by means of the loopy
SPA

* At message passing iteration ¢ € {1,..., L} we calculate the
following SPA messages in parallel

i’ #i
14 M M ’
b () =3 G0 (0 Wimn(ai,bn) [T 04, ()
a; =0 m/ =1
m’'#m

« Initialization at £ = 0: ég. .y (bm) = So0'_o bay (@) Wim(ai,by)

. /

© Florian Meyer, 2020 23




- ™
Loopy SPA for Joint Probabilistic Data Association

 Stretching the graph enables calculation of approximate Rwi,n(ai) by means of the loopy
SPA

* At message passing iteration ¢ € {1,..., L} we calculate the
following SPA messages in parallel

05 . (ai) szm a;i, b chf !

z';éz
; M M )
o, (bm) = ba, (i) Wi (ai, b) [ 6%, (1)
a; =0 m' =1

« Initialization at £ = 0: ég. .y (bm) = So0'_o bay (@) Wim(ai,by)

* Result after £ = L iterations: #a,(a:) = [I0_, ¢ . (a;)
. /

© Florian Meyer, 2020 24




General Probabilistic Assignment Algorithm

* Calculate joint assignment probabilities p;(a;) from single assignment probabilities ps(a;)

* At message passing iteration ¢ € {1,..., L} we calculate the
following SPA messages in parallel

m—>a Z \IIZm a’w H ¢[£ i 1—>b

i ;éz
£ M M ),
gb‘[ll]im_)bm (bm> - Z ps(di) \Ijim(a“ bm) H ¢\[If]im/ —a; (al)
CLZ'ZO m/:1
m’'#m

e Initialization at ¢ = 0: ¢\[I?]m_>b (b)) = 0o s(@i) Ui (az, by

* Result after ¢ = L iterations: pj(a;) = ps(a;) Hn]‘le ¢\[Ii]nﬁai (a;)
L ° Calculate MAP assignments a, = argmax p;(a;), ied{l,..., I}

© Florian Meyer, 2020
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Summary

* On factor graphs with cycles, the SPA
— has to be performed iteratively
— relies on a predefined message passing order

— only provides approximate marginal posteriors

* The multiobject tracking problem can be represented by a factor graphs with cycles and
solved by means of the SPA (messages are only send forward in time)

 The complexity of joint probabilistic data association for multiobject tracking scales
exponentially with the number of objects 1

* By making modifications to the graph, the scalability of joint probabilistic data
association can be increased

© Florian Meyer, 2020 26
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The Multiobject Tracking Problem

* At each time n: localize and track multiple objects ,, = [z, ... @ ,]" from

measurements z, = [z, ... 23, ,]  with uncertain origin

* Data association is challenging because of false clutter measurements and missing
measurements

- Measurements z,

Object States x,,_1 > &

.
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Multiobject Tracking Filters

* Let’s assume at time n, approximate posteriors f(mm_l) ~ f(®in-1|z1:n—1) for all
objects ¢ € {1,...,I} are available

* We can develop a multiobject tracking algorithm by performing foreachie {1,...,I}
)f(wi,n—l)dwi,n—l

* the conventional prediction step, i.e., ¢—; n(T; n)
* calculation of kg, , (a;p)

 the update step of the single object tracking (in clutter) solution where g (a:z-,n, ai,n)
is replaced by gz, (Zin, @in) = Gz, (Tin, Gin) K, , (Qin)

* Multiobject tracking is based on the calculation of kg, , (a; )

— Joint probabilistic data association

.
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Joint Probabilistic Data Association

e Data association:

Ky (Qin) = Z Z Z Vg, ., (@n)

|
M5 3

Qp(a’n) H ¢ai,,n(ai’,n)
a1,n=0 a;—1,»=0 a;j+1,,=0 ar =0 i’ =1
/ i i

plan) =

a )0, 3i,j€{1,2,...,I} such that i#j and a;, = a;, #0
1, otherwise

» Computational complexity of calculating ks, , (a;,) scalesas O((M,, + 1)1) and is
thus only feasible for small 1

—> need scalable methods for approximate calculation of Kz, ,, (ai,n)

.

© Florian Meyer, 2020 3



“Stretching” the Graph

* We use a hybrid description of data association uncertainty to replace ¢(a) by

I M
¢(a7 b) X H H \sz(azabm)
i=1m=1 0, a;=m, by, #i

Ui (ai, b)) 2 or b, =1, a;#m

1, otherwise.

* Properties of ¥(a,b):
— is non-zero only if @ and b describe the same event
— checks consistency by low-dimensional factors U,y (ak , bm)
— does not alter marginal distributions since there is a deterministic

one-to-one mapping from a toband p(a) = >, ¥(a,b)

.

© Florian Meyer, 2020



p
Loopy SPA for Joint Probabilistic Data Association

 Stretching the graph enables calculation of approximate Rwi,n(ai) by means of the loopy
SPA

* At message passing iteration ¢ € {1,..., L} we calculate the
following SPA messages in parallel

Cb\plm_m az Z\sz aza H E 1]

z’;éz
l M M )
¢\[D1m_>bm (bm) - Z ¢ai,n (ajl) \Ijlm(al7 bm) H ¢\[I/177L/_>ai (a/@)
m'=1

ag =0

m’#m

« Initialization at £ = 0: 6y ., (b)) = S0 bas (1) Wi (i, by

.
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p
Loopy SPA for Joint Probabilistic Data Association

 Stretching the graph enables calculation of approximate /Z:wi,n(a,i) by means of the loopy
SPA

* At message passing iteration ¢ € {1,..., L} we calculate the
following SPA messages in parallel

I
Sy o (a) Z Wi (i, bm) [] ¢4,

i’ #i

\[Iﬂm—w Z (ba az Vim CLZ, H qu/

m;ém

« Initialization at £ = 0: ég. .y (bm) = So0'_o bay (@) Wim(ai,by)

.
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- ™
Loopy SPA for Joint Probabilistic Data Association

 Stretching the graph enables calculation of approximate Rwi,n(ai) by means of the loopy
SPA

* At message passing iteration ¢ € {1,..., L} we calculate the
following SPA messages in parallel (z e{l,....I},me{l,...,M})

‘Ifzm_>a Z \Ijzm al’ H

z;éz

[€] E :
U, —sb,, ¢a az Vim az; Hd)\ll ) —ay az

m;ém

« Initialization at £ = 0: ég. .y (bm) = So0'_o bay (@) Wim(ai,by)

* Result after £ = L iterations: #a,(a:) = [I0_, ¢ . (a;)
. /

© Florian Meyer, 2020 7
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The Sum-Product Algorithm for Data Association (SPADA)

* The complexity of the probabilistic assignment algorithm can be reduced further by
performing the following steps

1. Since the constraint V;,, (ai, bm) is binary, messages can be represented by only
two different values

HZ 1<b‘1f 1_>b( =1), for a; = m
[4] (az) — i’ #i

\I/im—>a - f 1
Zb —0 HZ ;1 (b\I/ ( m): for a; 7é m
J4
’ G (1) [Ty =1 G, a0, (M), for by, =
Z%‘;O gb(li (CL@) Hm ;1 qb\II —a; (ai)7 for bm 75 v

.
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The Sum-Product Algorithm for Data Association (SPADA)

* The complexity of the probabilistic assignment algorithm can be reduced further by
performing the following steps

2. Since messages can be multiplied by an arbitrary constant, we divide each message
by one of its values

£—1 .
Hilzl qs\[llil’lﬂ},_)bm (/L)

i/ i

€] = , for a; = m
bm#l "4
1, for a; #m

Gy (m)TIN, 5!, (m)
m’'#m

£ , forb, =1
‘[Iflm—ﬂ)m (bm) X Zﬂa/{i:o ba,; (ai)H]ynllzl ¢‘[If7];m//—>ai (ai) "
az.#m m//#m
L, for by, # 1

.
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The Sum-Product Algorithm for Data Association (SPADA)

* The complexity of the probabilistic assignment algorithm can be reduced further by
performing the following steps

3. Messages can now be replaced by there normalized counterpart

1
[E] 1—|—ZI qb[e_l] (’L")’ fOI' a; =m
v, —>a-(ai) X Z’/:l Vit —bm
m 7 i #Z
1, for a; #m
¢a- (m) '
Z , for b, =
d)[@] (b ) X ba; (0)4‘2]\;[”/:1 ba, (m/)¢‘[1f7];m/—>ai (m’) m [/
Wim—>bpm 7T Kt
L for b, # 1

.
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The Sum-Product Algorithm for Data Association (SPADA)

* The complexity of the probabilistic assignment algorithm can be reduced further by
performing the following steps

4. Each message can be represented by a single value (z e{l,...,I},me{l,..., M})

[E] — 1 ¢ ¢a (m)
Vim=ai a4yl by, () Vim=bm = G, O+ M pa, (m) ol ()
) 75’6 m’'#m
NTRT . [0] Pa; (M)
Initialization: Vim—bm " o (42, e, ()
m'#m
Result after L iterations: L
R (07) = { qS\[I,i]m_mi(m), fora;, =me{l,...,M}
1, for a; =0

.
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Properties

* The complexity of the probabilistic assignment algorithm is essentially determined by
that of calculating the sums Zle ¢¥1m_>bm (7) and (b\[lﬂm—)bm =M b, (m) cb\[flm%i (m),
which scales as O(I M)

* |t can be shown that the loopy SPA algorithms for joint probabilistic data association
— solves a convex optimization problem
— is guaranteed to converge

— provides the correct MAP solution

M. Bayati, D. Shah, and M. Sharma, “Max-product for maximum weight matching: Convergence, correctness, and LP duality,” IEEE
Trans. Inf. Theory, no. 3, pp. 1241-1251, Mar. 2008.

J. L. Williams and R. A. Lau, “Multiple scan data association by convex variational inference,” IEEE Trans. Signal Process., vol. 66, no. 8,
pp. 2112-2127, Apr. 2018.

F. Meyer, T. Kropfreiter, J. L. Williams, R. A. Lau, F. Hlawatsch, P. Braca, and M. Z. Win, “Message passing algorithms for scalable
multitarget tracking,” Proc. IEEE, Feb. 2018.

o
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Joint Probabilistic Data Association

* The sum-product message passing rules are applied to the stretched factor graph

we obtain &ﬁmﬂi (a;) and qﬁlmbm (b) for the /th iteration

* Due to the binary consistency constrains, qb&ﬂm%m (b.,) takes only two values (one for
b,, =i and one for b,,, # i); similarly ¢; _ . (a:) takes one value for a; = m and one
value for a; #m

* Can be implemented by performing pointwise operationson I x M
matrices

* All R4,(a;) needed for multiobject tracking can be obtained with a
complexity that only scales as O(IM)

.

© Florian Meyer, 2020
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Multiobject Tracking Example

: ' MEASUREMENT UPDATE
: PREDICTION | AND DATA ASSOCIATION

]
>,

I
I
I
I
I
I
Previous Belief : Predicted Belief Current Belief
I
I
I
I
I

A__

—®

D. Gaglione, G. Soldi, F. Meyer, F. Hlawatsch, P. Braca, A. Farina, and M. Z. Win, Bayesian information fusion and multitarget
tracking for maritime situational awareness, IET Radar Sonar Navi., Nov. 2020.
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Hard Measurement Validation

* To further reduce computational complexity of multiobject tacking, measurements that
with a high probability have not been generate by an object, can be removed in a
suboptimum preprocessing step

* For each object a multidimensional gate is set up and only measurements that fall
within the gate are considered association candidates

* Joint probabilistic data association has only to be performed for objects that share
association candidates; thus its complexity is O(I'M")withI’ < Tand M’ < M

© Florian Meyer, 2020
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The Chi-Square Distribution

* The chi-square distribution with k degrees of freedom is the distribution of a sum of the
squares of £ independent normal random with unit variance

x%_l exp(—%) f(x)J
— 2 xr > 0 - k=1
f(z) = 25r(k) 0-5 — k=2
0, otherwise 0.4 = tj
. — k=6
0.31 114
['(n)=(n—-1)!  forn € Ny el
0.1+
. 0.0 ; ] : : : . ; . .
Mean: & 0 1 2 3 4 5 6 7 8%
Variance: 2k T

\
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Hard Measurement Validation

* Assumption: The measurement that is originated by object: at time n is distributed
according to

f(zm,n|zl:n—1) — fg(zm,n; Hnll';zna HnZ;ang + Zvn)

— fg(zm,n§ l"’z_i’w Ezi,n)
* The true measurement will be in the following set
Vin(y) = {Zm,n | (Zm,n — ”zi,n)TE;,ln (Zm,n — l’l’zi,n> < ’Y}

with probability determined by the threshold ¥

* The region that contains validated measurements is an ellipsoid with semiaxes given by
the square roots of the eigenvalues of v/,

© Florian Meyer, 2020
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Hard Measurement Validation

* The quadratic form that defines the validation region is chi-square distributed with the
number of degrees of freedom equal to the dimension of a measurement d

* Thus, the probability p, that a measurement lies in the validation region or “gate” can

be obtain from the cumulative distribution function of the chi-square distribution, i.e.,
pg = chi2cdf(v,d)

* Hard measurement validation trades of computational complexity and sensor
performance since pq is reduced to p); = pgPa

o ———
—

: : . _==1  Object1
* Example with two objects > 7T, = .
// 8 // ///
/ ~ - __//
/ 7=
/ x °/
// Object 2 7
/ .

/ ® /
l\ 7 Measurement

.
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Summary

* Computational complexity of joint probabilistic data association can be reduced from
O((M,, + 1)1) to O(I M,,) by performing a highly optimized loopy sum-product
algorithm

* Hard measurement validation (*'gating’’) can further reduce computational complexity
by extracting association candidates from the joint measurement vector and thus
reducing the dimension of the data association problem

© Florian Meyer, 2020
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The Multiobject Tracking Problem

* At each time n: localize and track an unknown number of objects x,, = [x

from measurements z, = [zg,l zg’Mn]T with uncertain origin

Measurements 2,

> N @ ® «
~
~ ®
~N
~
.\ > ~ ® @
® \ SO ®
® \
| | ~N
| o | N w X
o \ )( | Son ‘ [
Measurements 2,1 \ \ | | n—1 | | Object States x,,

Object States &, n—1

.

n,l...
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The Multiobject Tracking Problem

* At each time n: localize and track an unknown number of objects x,, = [z

from measurements z, = [zg,l zg’Mn]T with uncertain origin

n,l...

* Data association is challenging because of clutter measurements, missing
measurements, object births, and object deaths

Measurements z,,

Object States x,,—1 n—1

.

© Florian Meyer, 2020 2



The Multiobject Tracking Problem

* At each time n: localize and track an unknown number of objects x,,
from measurements z, = [z,

— [a’;
a1 ---Zp ]t with uncertain origin

* Data association is challenging because of clutter measurements, missing
measurements, object births, and object deaths

Measurements z,,

T
\
\

‘ Object States x,,
“o z

o

o

Object States T,,—1 n—1 "

© Florian Meyer, 2020
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The Multiobject Tracking Problem

* At each time n: localize and track an unknown number of objects x,, = [z

from measurements z, = [zg,l zg’Mn]T with uncertain origin

n,l...

* Data association is challenging because of clutter measurements, missing
measurements, object births, and object deaths

Measurements z,,

Object States x,,—1 n—1

.
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The Multiobject Tracking Problem

* At each time n: localize and track an unknown number of objects x,, = [z

from measurements z, = [zg,l zg’Mn]T with uncertain origin

n,l...

* Data association is challenging because of clutter measurements, missing
measurements, object births, and object deaths

Measurements z,,

Object States x,,—1 n—1

.

© Florian Meyer, 2020 9



Association Probabilities

* Approximate object-oriented marginal association probabilities
after ¢ = L iterations

- M L
Haiz) o $a, (@) TIN_, bg) . (as)

.
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Association Probabilities

* Approximate object-oriented marginal association probabilities
after / = L iterations

- M L
Haiz) o $a, (@) TIN_, bg) . (as)

e Approximate measurement-oriented marginal association
probabilities after ¢ — [, iterations

- I L
Bbm2) < [Ty o) .y (bim)

* Note that p(a; =0|z) is the probability that object ¢ did not generate a measurement
and p(b,, = 0|z)is the probability that measurement m was not generated by an object

\ — potentially useful for generating or terminating tracks

© Florian Meyer, 2020



Unassociated Measurements

* Unassociated measurements are measurements that with high probability have not
been originated by an object

e Can be determined by

— hard measurement evaluation: measurements that are
outside the gates of all the objects are declared unassociated

— joint probabilistic data association: all measurements with

~ Unassociated B
D(bm, = 0]2) larger than a certain threshold are declared Measurement /(’Bbject 1\\,
unassociated R T

// \\\ / /////
/ T
/ x °/
// Object 2/
|/ ) e g Unassociated
N7 Measurement

© Florian Meyer, 2020 8



Track Formation and Termination Heuristics

* A heuristic to initialize a new track for a newborn object is referred to as track
formation in clutter

* The logic-based approach uses gates to search for sequence of measurements that are
not associated to any existing object

* If arequirement is satisfied, then the measurement sequence is accepted as a valid
track and initialized by increasing the state space and extracting a prior distribution

from the sequence of measurements

* A track is terminated if for a number of time steps /N no measurement is associated to it

.

© Florian Meyer, 2020
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K/N Formation Heuristic
1. Every unassociated measurement is an initiator" -- it yields a tentative track

2. At the time step following the detection of an initiator, a gate is set up based on the
— assumed maximum and minimum object motion parameters

— the measurement noise variances

such that, if there is a target that gave rise to the initiator, the measurement from it in

this second time step (if detected) will fall in the gate with nearly unity probability

3. If there is a measurement, this tentative track becomes a preliminary track. If there is

no measurements, this track is dropped

4. Since a preliminary track has two measurements, a sequential Bayesian estimation can

be initialized and used to set up a gate for the next (third) time step

© Florian Meyer, 2020
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K/N Formation Heuristic

5. Starting from the third scan a logic of K detections out of IV time steps is used for
subsequent gates

6. If at the end (scan NV + 2 at the latest) the logic requirement is satisfied, the track
becomes a confirmed track; otherwise it is dropped

* The requirement of two initial detections reduces the probability of false tracks

* Typical values for K/N: 3/5, 4/6, ...

time stepn . N - @] time step n + 3
. —_———
* Advantages: Easy to implement measurement sequence

» Disadvantages: Heuristic, performance analysis difficult

Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and Data Fusion: A Handbook of Algorithms. YBS, 2011.

© Florian Meyer, 2020
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Bayesian Initialization of New Tracks
* Consider time n and potential object states Y; n = [w;;l:n Ti,n]T
is modeled by a Bernoulli variable r; ,, € {0,1}

* Potential object birth: For each n=1
measurement Zm n, m <M,
introduce a new state

My

birth

, 1 €1, where existence

© Florian Meyer, 2020
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Bayesian Initialization of New Tracks
* Consider time n and potential object states Y; n = [w;l:n Tz’,n]Ta 1 €71, where existence
is modeled by a Bernoulli variable r; ,, € {0,1}

* Potential object birth: For each n=1 n=2
measurement Zm n, m <M,
introduce a new state

M
* Potential object death: Remove -
states 7 with low probability of Mo
existence p(r;, = 1|z1.,) bith etk sssoniation

.
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Bayesian Initialization of New Tracks

Consider time n and potential object states Y n = |T
is modeled by a Bernoulli variable r; ,, € {0,1}

Potential object birth: For each
measurement Zm n, m <M,
introduce a new state

Potential object death: Remove

states 7 with low probability of
existence p(r; ., = 1|z1.)

Localizing an unknown number of objects:
— determine existence of object ¢ by comparing p(7i» = 1|z1.n) to threshold, e.g., P,, =0.5

?:,’I’L T,l‘?n

Mo

birth

update with
data association

, 1 €1, where existence

n=3
Ka
M3
birth and death

— estimate the states x; ,, of existing objects by using, e.g., the MMSE estimator

/

© Florian Meyer, 2020
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Multiobject Tracking — Factor Graph

* Complete graph for a sequence of measurements:

F. Meyer, T. Kropfreiter, J. L. Williams, R. A. Lau, F. Hlawatsch, P. Braca, and M. Z. Win, “Message passing algorithms for scalable
K multitarget tracking,” Proc. IEEE, Feb. 2018.

/

© Florian Meyer, 2020
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Multiobject Tracking — Factor Graph

* Complete graph for a sequence of measurements:

b @
data association

| < data association

F. Meyer, T. Kropfreiter, J. L. Williams, R. A. Lau, F. Hlawatsch, P. Braca, and M. Z. Win, “Message passing algorithms for scalable
K multitarget tracking,” Proc. IEEE, Feb. 2018. /
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Multiobject Tracking — Factor Graph

* Complete graph for a sequence of measurements:

n—2

© ®

potential object birth —> - . @ oM /

H@

— <« potential object birth

F. Meyer, T. Kropfreiter, J. L. Williams, R. A. Lau, F. Hlawatsch, P. Braca, and M. Z. Win, “Message passing algorithms for scalable
K multitarget tracking,” Proc. IEEE, Feb. 2018.

v

© Florian Meyer, 2020
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Distance Partitioning

Recall data association assumptions: An (i) object can generate at most one
measurement and a (ii) measurement can be generated by at most one object

For high-resolution sensors (e.g., LIDAR), (i) is typically not satisfied

Statistical model for case where (i) is not satisfied results in very challenging data
association problem ——— extended object tracking

Heuristic preprocessing stage that aims to enforce (i):

— Partition the set of measurements Z = {zm ]m e{l,..., M}} into disjoint subsets
(cells) Z(C), c€1,...,C, where each subset contains spatially close measurements that
are likely to be generated by the same object (C' < M)

— Use “hyper measurements” 2% related to cells Z(¢) as measurements for multiobject
tracking

.

© Florian Meyer, 2020



Distance Partitioning

Let us assume d(-, -) is a distance measure and A,,,, ,,,, is the distance of measurement
pairz,,, and z,,,

The set the measurements z = {z,, }m € {1,...,M}} can be partitioned into disjoint
subsets (cells) based on the following theorem

Theorem: A distance threshold d, defines a unique partition of that leaves all pairs
of measurements (m1,m2) satisfying A,,,; m, < d¢ in the same cell (see references for
detailed version of theorem)

If the measurements noise is additive Gaussian, the Mahalanobis distance can be used

d(Zm,, Zm,) = \/(Zm1 — zm2)1|2,; 1|(,2:m1 — Zm,) Measurement noise covariance matrix

K. Granstrom, C. Lundquist, and O. Orguner, “Extended target tracking using a Gaussian-mixture PHD filter,” IEEE Trans. Aerosp.
Electron. Syst., Oct. 2012.

K. Granstrom, O. Orguner, R. Mahler, and C. Lundquist, Corrections on: “Extended target tracking using a Gaussian-mixture PHD
K filter,” IEEE Trans. Aerosp. Electron. Syst., Apr. 2017. /

© Florian Meyer, 2020 19




Distance Partitioning

 Distance threshold: d,

* Number of measurements: V,,

* Distance between measurement z;
and measurement z;: A; ;

Distance Partitioning

Require: d,, A,..j, 1<i#j<N.

I:  CellNumber(i) =0, 1 <i< N: {Set cells of all
measurements to null}

2:  Cellld =1 {Set the current cell id to 1}
%Find all cell numbers

3: fori=1 N do

4. if CellNumbers(i) = 0 then

5: CellNumbers(i) = Cellld

6: CellNumbers = FindNeighbors(i,CellNumbers,Cellld)
7: Cellld = Cellld+1

8: end if

9: end for

The recursive function FindNeighbors(-,-,-) i1s given as
1:  function
CellNumbers = FindNeighbors(i,CellNumbers,Cellld)

2: forj=l:N: do

3: if j#i & A,.j <d, & CellNumbers(j) = 0 then

4: CellNumbers(j) = Cellld

5: CellNumbers = FindNeigbors(j,CellNumbers,Cellld)
6: end if

7: end for

20
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Optimal Subpattern Assignment Metric

* Mean square error is not a suitable metric for many multiobject tracking applications
— not defined if estimated number of objects is different than the true number of objects

— track swapping leads to large errors

* Parameters A

— Metric order p \
— Cutoff parameter 77

— Inner metric d(x;, ;)

Tracks

D. Schuhmacher, B.-T. Vo, B.-N. Vo, “A Consistent Metric for Performance Evaluation of Multi-Object Filters,” IEEE Trans. Signal
Process., Jul. 2008.

21
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\
Optimal Subpattern Assignment Metric
* Let © = [x1,x2,..., 2] be the true joint object state vector and & = &1, &2, ..., %;]T
be the estimated joint object state vector
» Simple version for the case [ = I, p=21n=00,and d(xz;,x;) = ||x; — ;|
00 . I N 1/2
d5™) = 3 (mingen, Yiy @ — &0 [1%)
— II; is the set of all permutations of [1,2,..., It
/

© Florian Meyer, 2020
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Optimal Subpattern Assignment Metric

* General version for J < T

7 ~\1/p
A7 (@, @) = 3( mingen, Siy A (@: @) + 17 (1 = 1) )

where d"(z;, &;) =(min(n, d(z;, &;))]

Individual object state errors are cutoff at 7)

© Florian Meyer, 2020
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Optimal Subpattern Assignment Metric

* General version for J < T

. : [ . )\ 1/p
dl(;?) ($7 w) — % ( MIN7er1; Zf:l d(n) (mia ww(i))p _|_[77P<I — I)D

Penalty for dimension mismatch

where d(”)(wi, .f:j) = min(n, d(x;, ﬂf?y))

© Florian Meyer, 2020
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Optimal Subpattern Assignment Metric

* General version for J < T

a\m p) =1 ’ I A (s B3P P(] — ] L/
p (waw) — 7\ MlNgxer; Zi:l (wlaww(z)) + 1 ( )

where d(”)(wi, .f:j) = min(n, d(x;, :ﬁ]))

* General versionfor [ > [

1/p

d}()"?)(@) w) — % ( minﬁéﬂf Zf:l d(n) (5%% mﬂ(i))p + np(I o j))

© Florian Meyer, 2020
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Summary

e Marginal association probabilities and gating are useful to introduce and remove objects states
from the state space (initiate and terminate tracks)

 Distance partitioning can be used to as a preprocessing stage to ~enforce’” the property that each

object just produces one measurement

* The very general optimal subpattern assignment metric makes it possible to quantify estimation
errors in arbitrary multiobject tracking problems
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