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About this Webinar

Location awareness is a cornerstone of future wireless networks and
the basis for a wide range of emerging applications

To enable location awareness in networks, there is a need for
distributed, efficient, and scalable estimation algorithms

This webinar presents a message passing framework for designing
distributed Bayesian navigation and tracking algorithms for future
wireless networks

Our focus will be on a set of enabling methodologies including
sequential Bayesian estimation, factor graphs and the belief
propagation algorithm, particle representations, and consensus
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Applications

Autonomous driving

Indoor localization

Maritime situational awareness

Environmental monitoring

. . .
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Simultaneous Object Tracking and Self-Localization

Simultaneous distributed cooperative tracking of moving objects and
self-localization of moving agents

cooperative agent
noncooperative object
communication link
measurement link
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General Problem

We consider distributed (= decentralized), cooperative estimation in
a mobile agent network

Only local computations at the individual agents; no central
processing, no fusion center

Only local communications between neighboring agents; no data
flooding, no routing, no long-range communications
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The Basis: Bayesian Estimation Framework

Estimate a parameter/state x from a measurement/observation y

Minimum mean-square error (MMSE) estimator:

x̂ = E
{
x|y
}

=

∫
x f (x|y)dx

Posterior probability density function (pdf):

f (x|y) ∝ f (y|x)︸ ︷︷ ︸
Likelihood function

Prior pdf︷︸︸︷
f (x) (Bayes’ theorem)

[Kay, 93] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, 1993.
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State-Space Model

Consider a sequence of states xn and a sequence of measurements yn

State-transition model

State xn evolves according to

xn = gn(xn−1, un︸︷︷︸
Driving noise (white)

) , n = 1, 2, . . .

This determines the state-transition pdf f (xn|xn−1)

Measurement model

Measurement yn depends on state xn according to

yn = hn(xn, vn︸︷︷︸
Measurement noise (white)

) , n = 1, 2, . . .

This determines the likelihood function f (yn|xn)
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Markovian Properties

Noise sequences un and vn are assumed mutually independent and
independent of x0.

Recall:

At time n, the state xn summarizes all relevant information about the
present and past

Mathematically expressed by “Markovian properties”:

f (yn|xn, y1:n−1) = f (yn|xn)

f (xn+1|xn, y1:n) = f (xn+1|xn)
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xn = gn(xn−1,un) , un is white

yn = hn(xn, vn) , vn is white

where y1:n ,

y1
...
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Sequential Bayesian Estimation

We wish to estimate the current state xn from the past and current
measurements y1, y2, . . . , yn, i.e., from y1:n, for n = 1, 2, . . .

MMSE estimator:

x̂n = E
{
xn|y1:n

}
=

∫
xn f (xn|y1:n) dxn

The posterior pdf f (xn|y1:n) can be calculated recursively/sequentially

[Anderson & Moore, 79] J. Anderson and B. Moore, Optimal Filtering, Prentice-Hall, 1979.

14/60



Sequential Bayesian Estimation

The Markovian properties enable sequential calculation of f (xn|y1:n)

One recursion consists of two steps:

Prediction step

f (xn|y1:n−1)︸ ︷︷ ︸
Predicted

posterior pdf

=

∫
f (xn|xn−1)︸ ︷︷ ︸

State-transition
pdf

f (xn−1|y1:n−1)︸ ︷︷ ︸
Previous

posterior pdf

dxn−1

Measurement update step

f (xn|y1:n)︸ ︷︷ ︸
Posterior pdf

∝ f (yn|xn)︸ ︷︷ ︸
Likelihood
function

f (xn|y1:n−1)︸ ︷︷ ︸
Predicted

posterior pdf

Unfortunately, computationally infeasible in general ⇒ feasible
approximations required

We will discuss feasible approximations later (in a generalized setting)
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Sequential Bayesian Estimation

Consider joint posterior pdf f (x0:n|y1:n)

Sequential calculation of the “marginal” posterior pdf f (xn|y1:n) can
be interpreted as a factorization and marginalization of the joint
posterior pdf f (x0:n|y1:n)

Factorization

f (x0:n|y1:n) ∝ f (x0)
n∏

n′=1

f (yn′ |xn′) f (xn′ |xn′−1)

Marginalization

f (xn|y1:n) ∝
∫

f (x0)

(
n∏

n′=1

f (yn′ |xn′) f (xn′ |xn′−1)

)
dx0:n−1
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Factor Graph

Recall factorization:

f (x0:n|y1:n) ∝ f (x0)
n∏

n′=1

f (yn′ |xn′) f (xn′ |xn′−1)

Representation by factor graph:

f (xn−1 |xn−2 ) xn−1 f (xn|xn−1 ) xn

f (yn|xn)f (yn−1 |xn−1 )

variable node

factor node

[Kschischang et al., 01] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Trans. Inf. Theory, 2001.
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Message Passing

Prediction step → message filtering

f (xn|y1:n−1) =

∫
f (xn|xn−1) f (xn−1|y1:n−1) dxn−1

φ→n(xn) =

∫
f (xn|xn−1)ψ→n(xn−1)dxn−1

Measurement update step → message multiplication

f (xn|y1:n) ∝ f (yn|xn) f (xn|y1:n−1)

ψ→n+1(xn) = f (yn|xn)φ→n(xn)

f (xn−1 |xn−2 )

f (yn|xn)f (yn−1 |xn−1 )

f (xn|xn−1 )xn−1 xn
φ→n−1 ψ→n φ→n ψ→n+1
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Message Passing

f (xn−1 |xn−2 )

f (yn|xn)f (yn−1 |xn−1 )

f (xn|xn−1 )xn−1 xn
φ→n−1 ψ→n φ→n ψ→n+1

Sequential calculation of the marginal posterior pdf f (xn|y1:n) can be
formulated as message passing on a factor graph
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Generalized Factorization

Consider state vectors xk , k = 1, . . . ,K , total state vector
x = (xT

1 · · · xT
K )T, and measurement vector y

General “pairwise” factorization of joint posterior pdf:

f (x|y) ∝

(
K∏
l=1

r(xl)

) ∏
(k ′,l ′)∈E

r(xk ′ , xl ′ ; yk ′l ′)

where the ykl are certain subvectors of y and E ⊆ {1, . . . ,K}2

(“edge set”)
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Factor Graph

Recall factorization:

f (x|y) ∝

(
K∏
l=1

r(xl)

) ∏
(k ′,l ′)∈E

r(xk ′ , xl ′ ; yk ′l ′)

Representation by factor graph (example):

x1 x2

x3x4

r1 r2

r3r4

r3,4

r1,4 r1,3 r2,3

K = 4 state vectors xk

E = {(1, 3), (1, 4), (2, 3), (3, 4)}

rl , r(xl)

rk,l , r(xk , xl ; ykl)
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Marginalization

MMSE estimator of state xk : x̂k =
∫
xk f (xk |y)dxk

The posterior pdf f (xk |y) is obtained by marginalization of the joint
posterior pdf f (x|y):

f (xk |y) ∝
∫

f (x|y)dx∼k

∝
∫ ( K∏

l=1

r(xl)

) ∏
(k ′,l ′)∈E

r(xk ′ , xl ′ ; yk ′,l ′)dx∼k

“Marginalize a product of functions” (MPF) problem

The complexity of MPF computations can be reduced dramatically by
an appropriate hierarchical organization of the products and integrals
→ belief propagation algorithm aka sum-product algorithm

Systematic, “automated” exploitation of statistical independence
structure
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Belief Propagation (BP) Algorithm

Message and belief calculation rules

Message (“extrinsic information”) from variable node xl to function node
r(xk , xl ; ykl):

ψl→k(xl) = r(xl)
∏

k′∈Nl\{k}

φk′→l(xl)

where Nl ,
{
k ∈ 1, . . . ,K : (l , k) ∈ E

}
Message from function node
r(xk , xl ; ykl) to variable node xk :

φl→k(xk) =

∫
r(xk , xl ; ykl)ψl→k(xl)dxl

Belief of variable xk :

b(xk) ∝ r(xk)
∏
l∈Nk

φl→k(xk)

x1 x2

x3x4

r1 r2

r3r4

r3,4

r1,4 r1,3 r2,3

ψ2→3

φ2→3

[Kschischang et al., 01] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Trans. Inf. Theory, 2001.
26/60



Belief Propagation (BP) Algorithm

The BP algorithm performs an
exact marginalization, i.e.,
b(xk) = f (xk |y), if the factor
graph is a tree

The BP algorithm performs an
approximate marginalization, i.e.,
b(xk) ≈ f (xk |y), if the factor
graph has loops (cycles)

In the loopy case, the BP algorithm
is executed iteratively
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Message Representation

Direct implementation of the BP algorithm (message and belief
calculation rules) is still computationally infeasible

Two alternative feasible approximations:

using a parametric representation for the messages and beliefs

⇒ Gaussian BP, Kalman filtering, . . .

using a particle representation for the messages and beliefs

⇒ nonparametric BP, particle filtering, . . .

Here, we use a particle representation
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Particle Representation / Nonparametric BP

Each message or belief is represented by a large number of particles

and weights: f (x) ∼
{(

x(j),w (j)
)}J

j=1

Nonparametric BP uses a particle representation and is suited to
arbitrary nonlinear, non-Gaussian systems

[Ihler et al., 05] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky, “Nonparametric belief propagation for

self-localization of sensor networks,” IEEE J. Sel. Areas Commun., 2005.
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Going Distributed

Let us next consider a distributed implementation

Recall that our problem is the simultaneous distributed, cooperative
tracking of moving objects and self-localization of moving agents

cooperative agent (local state)
noncooperative object (global state)
communication link
measurement link

More generally, we will consider the distributed sequential estimation
of both global states and local states
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Distributed Sequential Estimation of a Global State

Time-dependent state vector xn, n = 1, 2, . . . (e.g., location of a
noncooperative object)

Agent network consisting of K agents k = 1, . . . ,K

Each agent k acquires a time-dependent measurement vector yn,k

Each agent k aims to estimate xn from y1:n (i.e., from all the
measurements yn′,k ′ for k ′ = 1, . . . ,K and n′ = 1, . . . , n)

Fully distributed: no fusion center, only local communications

33/60



Distributed Sequential Estimation of a Global State

State-transition model

xn = gn(xn−1, un︸︷︷︸
Driving noise (white)

) , n = 1, 2, . . .

This determines the state-transition pdf f (xn|xn−1)

Measurement model at agent k

yn,k = hn,k(xn, vn,k︸︷︷︸
Measurement noise (white, independent across k)

) , n = 1, 2, . . . , k = 1, . . . ,K

This determines the local likelihood function f (yn,k |xn)

MMSE estimator: x̂n = E
{
xn|y1:n

}
=
∫
xn f (xn|y1:n) dxn

We need a distributed algorithm for recursive/sequential calculation
of the posterior pdf f (xn|y1:n)
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Distributed Sequential Estimation of a Global State

In a distributed setting, the measurements yn,k are dispersed among
the agents k

Disseminating the locally available information through the network is
an essential part of distributed estimation algorithms

Design issues:

What kind of local processing is performed?
What quantities are communicated?
How is the communication organized?

Computationally feasible estimation algorithms can be based on
parametric (e.g., Gaussian) or particle representations

Here, we use a particle representation, which leads to a distributed
particle filter
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Distributed Particle Filter

Nonparametric (particle-based) implementation of distributed
sequential Bayesian estimation

1 Input: yn,k and
{(

x
(j)
n−1,k ,w

(j)
n−1,k

)}J
j=1
∼ f (xn−1|y1:n−1)

2 Prediction: “Predicted” particles x
(j)
n,k are drawn from f

(
xn
∣∣x(j)

n−1,k

)
3 Update: Weights are calculated as w

(j)
n,k ∝ w

(j)
n−1,k f

(
yn
∣∣x(j)

n,k

)
4 Estimation: x̂n =

∑J
j=1 w

(j)
n,k x

(j)
n,k (approximates the MMSE

estimator)

5 Resampling (optional)

Steps performed at time n by agent k

Problem: The global likelihood function f (yn|xn) is not available at
the agents
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Consensus

The global likelihood function factorizes (because the measurement
noises vn,k are independent across k):

f (yn|xn) =
K∏

k=1

f (yn,k |xn)

Equivalently,

f (yn|xn) = exp

(
K∑

k=1

log f (yn,k |xn)

)

In the update step of the particle filter with J particles, the global
likelihood function has to be evaluated J times, i.e.,

w
(j)
n,k ∝ w

(j)
n−1,k exp

(
K∑

k=1

log f
(
yn,k

∣∣x(j)
n

))
, j = 1, . . . , J
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Consensus

Recall update step of the particle filter:

w
(j)
n,k ∝ w

(j)
n−1,k exp

(
K∑

k=1

log f
(
yn,k

∣∣x(j)
n

))
= w

(j)
n−1,k exp

(
an,j(yn)

)
with

an,j(yn) =
K∑

k=1

log f
(
yn,k

∣∣x(j)
n

)
The local contributions log f

(
yn,k

∣∣x(j)
n

)
, j = 1, . . . , J are calculated

locally at each agent k

The sum of local contributions, an,j(yn), can be calculated in a
distributed manner using a consensus algorithm
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Consensus

1 Initialize the local iterate as ζ
(0)
k = log f

(
yn,k

∣∣x(j)
n

)
2 For i = 1, 2, . . . , imax:

Update the local iterate according to

ζ
(i)
k = ωk,k ζ

(i−1)
k +

∑
k′∈Nk

ωk,k′ ζ
(i−1)
k′

Broadcast ζ
(i)
k to all neighbors k ′∈Nk

3 Calculate ãn,j(yn) , Kζ
(imax)
k

Consensus-based calculation of an,j(yn)

For imax →∞, ãn,j(yn) is guaranteed to converge to an,j(yn) if the
network is connected and the weights ωk,k ′ are chosen appropriately

The number of agents K needs to be known at each agent, and the
random number generators used at the agents to draw the predicted
particles need to be synchronized
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Simulation of Distributed Particle Filter

We consider distributed object tracking:

One mobile noncooperative object, five static cooperative agents at
known locations

The state of the mobile object consists of location and velocity, i.e.,
xn =(x1,n x2,n ẋ1,n ẋ2,n)T

State-transition model for the mobile object:

xn =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

xn−1 +


0.5 0

0 0.5

1 0

0 1

un , with un ∼ N (0, σ2
uI)

Measurement model:

yn,k = ‖(x1,n x2,n)T − pk‖+ vn,k , k = 1, 2, 3, 4

with vn,k ∼ N (0, σ2
v ) and known agent location pk
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Simulation of Distributed Particle Filter

cooperative agent

communication link

true location
true trajectory

measurement

estimated location

estimated trajectory

particle
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Distributed Sequential Estimation of Local States

With each agent k , there is associated a time-dependent “agent
state” vector xn,k , n = 1, 2, . . . (e.g., time-dependent location of
agent)

Each agent k acquires time-dependent pairwise measurements yn,kl
involving other agents l ∈Nn,k

Each agent k aims to estimate its state xn,k from y1:n (i.e., from all
the measurements yn′,k ′l for k ′ = 1, . . . ,K , l ∈Nn′,k ′ , n

′ = 1, . . . , n)

Fully distributed: no fusion center, only local communications

[Wymeersch et al., 09] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless networks,”

Proc. IEEE, 2009.

[Win et al., 18] M. Z. Win, F. Meyer, Z. Liu, W. Dai, S. Bartoletti, and A. Conti, “Efficient multi-sensor

localization for the Internet-of-Things,” IEEE Signal Process. Mag., 2018.
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Distributed Sequential Estimation of Local States

State-transition model for agent k

xn,k = gn,k(xn−1,k , un,k︸︷︷︸
Driving noise

) , n = 1, 2, . . .

Measurement model at agent k

yn,kl = hn,kl(xn,k , xn,l , vn,kl︸︷︷︸
Measurement noise

) , l ∈ Nn,k , n = 1, 2, . . .

MMSE estimator:

x̂n,k = E
{
xn,k |y1:n

}
=

∫
xn,k f (xn,k |y1:n)dxn,k

The posterior pdf f (xn,k |y1:n) can be calculated at agent k by a
distributed implementation of a “dynamic” BP algorithm
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Distributed Sequential Estimation of Local States

Consider the joint state xn , (xT
n,1 · · · xT

n,K )T

The posterior pdf f (xn,k |y1:n) is obtained by marginalizing the joint
posterior pdf f (x0:n|y1:n):

f (xn,k |y1:n) =

∫
f (x0:n|y1:n)dx∼n,k

Factorization of the joint posterior pdf:

f (x0:n|y1:n) ∝

(
K∏
l=1

f (x0,l)

)
n∏

n′=1

(
K∏

k=1

f (xn′,k |xn′−1,k)

)
×
∏

(k ′,l ′)∈En′

f (yn′,k ′l ′ |xn′,k ′ , xn′,l ′)
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Distributed Sequential Estimation of Local States

Recall factorization:

f (x0:n|y1:n)∝
(∏K

l=1 f (x0,l )
)∏n

n′=1

(∏K
k=1 f (xn′,k |xn′−1,k )

)∏
(k′,l′)∈En′

f (yn′,k′l′ |xn′,k′ ,xn′,l′ )

Representation by factor graph:

0 0 0 0 01 1 1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

n−1 n

x1

x2

xK

x1

x2

xK

f1f1

f2f2

fKfK

f1,2f1,2f1,l f1,l

f2,lf2,l

fK,lfK,l

variable node
xk , xn,k

factor node (state-transition function)
fk , f(xn,k |xn,k−1 )

factor node (likelihood function)
fk,l , f(yn,kl |xn,k , xn,l)
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Distributed Sequential Estimation of Local States

Factor graph:

0 0 0 0 01 1 1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

n−1 n

x1

x2

xK

x1

x2

xK

f1f1

f2f2

fKfK

f1,2f1,2f1,l f1,l

f2,lf2,l

fK,lfK,l

Problem: Factor graph grows with time ⇒ computation and
communication requirements per time step increase linearly with time

Solution: Messages are sent only forward in time and iterative
message passing is performed at each time step individually
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Distributed Sequential Estimation of Local States

Dynamic BP algorithm:

“Prediction” message:

φ→n(xn,k) =

∫
f (xn,k |xn−1,k)b(xn−1,k)dxn−1,k

Since we send messages only forward in time, we directly use the belief
b(xn−1,k) instead of some extrinsic information

“Measurement” message:

φl→k(xn,k) =

∫
f (yn,kl |xn,l , xn,k)ψl→k(xn,l)dxn,l

Extrinsic information:

ψl→k(xn,l) = φ→n(xn,l)
∏

k′∈Nn,l\{k}

φk′→l(xn,l)

Belief:

b(xn,k) ∝ φ→n(xn,k)
∏

l∈Nn,k

φl→k(xn,k)
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Distributed Sequential Estimation of Local States

A distributed implementation of the dynamic BP algorithm

presupposes that the communication graph of the agent network

coincides with the factor graph

Agent k in the communication graph corresponds to variable node xn,k
in the factor graph

Agent k is able to communicate with all neighboring agents l ∈Nn,k

agent

communication link
variable node

factor node

This correspondence guarantees that all the messages required
for calculating the belief b(xn,k) at agent k are within the
“communication neighborhood” of agent k
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Distributed Sequential Estimation of Local & Global States

cooperative agent
noncooperative object
communication link
measurement link

Local states: xn,k , k = 1, . . . ,K (correspond to cooperative agents)

Global states: xn,m, m = K + 1, . . . ,M (correspond to
noncooperative objects)

Measurements: yn,kl , k = 1, . . . ,K , l ∈Nn,k ⊆ {1, . . . ,M}\{k}
(acquired by cooperative agents)

Each agent k aims to estimate its own local state xn,k and the global
states xn,m, m = K + 1, . . . ,M from y1:n (i.e., from all the
measurements yn′,k ′l for k ′ = 1, . . . ,K , l ∈ Nn′,k ′ , n

′ = 1, . . . , n)
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Distributed Sequential Estimation of Local & Global States

Use a distributed BP algorithm (particle-based implementation)

Problem: Global states xn,m, m = K + 1, . . . ,M correspond to
noncooperative objects ⇒ some vital information is not
communicated to the cooperative agents

More specifically, for calculating the belief b(xn,m), the product of
messages

∏
l∈Nn,m

φl→m(xn,m) is required — unfortunately, this
message product is not available at the cooperative agents

We solve this problem by calculating the particle weights using
consensus, as explained earlier in Section 3
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Distributed Sequential Estimation of Local & Global States

Transfer of probabilistic information:

In separate estimation of local and global
states, typically the final local state
estimates x̂n,k , k = 1, . . . ,K are used for
estimation of the global states

estimation of
local states

estimation of
global states

bn−1 ,k

bn−1 ,m

bn,k

bn,m

x̂n,k

In joint estimation of local and global
states, as considered here, probabilistic
information is transferred between local
and global state estimation — this
improves the performance of both stages

estimation of
local states

estimation of
global states

bn−1 ,k

bn−1 ,m

bn,k

bn,m

ψn,k→m ψn,m→k
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Simulation Setting

We consider joint distributed object tracking and cooperative
self-localization:

Two mobile noncooperative objects, eight mobile cooperative agents,
four anchors (static cooperative agents with perfect prior information)

The states of the mobile objects and agents consist of location and
velocity, i.e., xn,k =(x1,n,k x2,n,k ẋ1,n,k ẋ2,n,k)T

State-transition model for mobile objects and agents:

xn,k =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

xn−1,k +


0.5 0

0 0.5

1 0

0 1

un,k , with un,k ∼ N (0, σ2
uI)

Measurement model for mobile agents and anchors (k = 1, . . . ,K ):

yn,kl = ‖(x1,n,k x2,n,k)− (x1,n,l x2,n,l)‖+ vn,kl , l ∈ Nn,k

with vn,kl ∼ N (0, σ2
v )
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Simulation Scenario

x1 -coordinate [m]

x 2
-c

oo
rd

in
at

e
[m

]

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

— trajectory of mobile agent
(initial location is indicated
by ×)

— trajectory of object (initial
location is indicated by ∗)
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Simulation Results

Separate vs. joint cooperative object tracking and self-localization
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Conclusion

General problem: Distributed, cooperative, sequential estimation
in a decentralized network

Both cooperative network nodes (“agents”) and noncooperative
network nodes (“objects”)

The belief propagation algorithm systematically exploits conditional
independencies for reduced complexity and improved scalability

Only local computations at the individual agents and local
communications between neighboring agents are performed

Considered scenario: joint distributed cooperative object tracking and
self-localization

Improved performance because of bidirectional probabilistic
information transfer between object tracking and self-localization
stages
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Recent Results

The proposed framework and methodology has been adapted to
accommodate additional tasks such as

distributed synchronization [Etzlinger et al., 17]

information-seeking agent control [Meyer et al., 15]

It has also been extended to scenarios involving an unknown and
time-varying number of objects as well as object-measurement
association uncertainty [Meyer et al., 17], [Meyer & Win, 18], [Sharma et al., 19]

[Etzlinger et al., 17] B. Etzlinger, F. Meyer, F. Hlawatsch, A. Springer, and H. Wymeersch, “Cooperative simultaneous

localization and synchronization in agent networks,” IEEE Trans. Signal Process., Jul. 2017.

[Meyer et al., 15] F. Meyer, H. Wymeersch, M. Fröhle, and F. Hlawatsch, “Distributed estimation with information-seeking

control in agent networks,” IEEE J. Sel. Areas Commun., Nov. 2015.

[Meyer et al., 17] F. Meyer, P. Braca, P. Willett, and F. Hlawatsch, “A scalable algorithm for tracking an unknown number of

targets using multiple sensors,” IEEE Trans. Signal Process., Jul. 2017.

[Meyer & Win, 18] F. Meyer and M. Z. Win, “Joint navigation and multitarget tracking in networks,” in Proc. IEEE ICC-18,

May 2018.

[Sharma et al., 19] P. Sharma, A.-A. Saucan, D. J. Bucci, and P. K. Varshney, “Decentralized Gaussian filters for cooperative

self-localization and multi-target tracking,” IEEE Trans. Signal Process., Nov. 2019.
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